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You Only Plan Once: A Learning-based One-stage
Planner with Guidance Learning

Junjie Lu, Xuewei Zhang, Hongming Shen, Liwen Xu, and Bailing Tian

Abstract—In this work, we propose a learning-based one-
stage planner for trajectory generation of quadrotor in obstacle-
cluttered environment without relying on explicit map. We
integrate perception and mapping, front-end path searching,
and back-end optimization into a single network. We frame the
motion planning problem as a regression of spatially separated
polynomial trajectories and associated scores. Specifically, our
approach adopts a set of motion primitives to cover the searching
space, and predicts the offsets and scores of primitives for
local optimization in a single forward propagation. A novel
unsupervised learning strategy, termed guidance learning, is
developed to provide numerical gradients as the guidance for
training. We train the network policy with privileged information
about the surroundings while only the noisy depth observations
are available during inference. Finally, a series of experiments are
conducted to demonstrate the effectiveness and time-efficiency
of the proposed method in both simulation and real-world.
For supplementary video see: https://youtu.be/GoqZM3TxDbM.
The code will be released at https://github.com/TJU-Aerial-
Robotics/YOPO.

Index Terms—Autonomous Navigation, Motion Planning, Deep
Learning

I. INTRODUCTION

AUTONOMOUS navigation of quadrotors in obstacle-
cluttered environment has been extensively investigated.

However, the limited computational resources and low-
precision airborne sensors make this task still challenging.

Traditionally, the autonomous navigation problem is usually
separated into (i) perception and mapping, (ii) front-end path
searching, and (iii) back-end trajectory optimization. Firstly,
an efficient perception and mapping module [1], [2] is es-
sential for autonomous aerial system to navigate in unknown
environments. However, compared to LiDAR sensors with
more precise and long-range measurements, stereo cameras
only provide noisy depth images with about 0.6 - 6m sensing
range. It significantly affects the performance of the planning
algorithms, especially for the generation of flight corridors in
hard-constrained methods. Besides, the navigation problem is
in general multi-modal because many equally valid solutions
may exist. As a result, the planner can be trapped in different
local minima of a small fraction of solution space around
different initial paths. To avoid suboptimal solutions, the front-
end such as topological path searching algorithm [3], [4] is
adopted to find multiple initial paths. Finally, the path is further
improved by the back-end optimization module such as [5], [6]
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Fig. 1. We utilize the motion primitives (the white curves) as anchors for
comprehensive exploration of the solution space, and predict the offsets and
scores for further improvement (the curves color-coded by scores). To clarify,
the map is unavailable and only the optimal trajectory is solved in practice.

to make it smooth, safe, and dynamically feasible. The divide-
and-conquer pipeline facilitates the independent optimization
of individual modules and makes the overall system more
interpretable. However, it also introduces additional latency,
which is fatal for high-speed flights.

In recent years, the learning-based planners that process
raw sensory inputs and perform complex behaviors directly
have shown great potential. Some policies are trained to
imitate a privileged expert, and others adopt reinforcement
learning to explore the optimal policy by trial-and-error. The
supervised learning (imitation learning or behavior cloning)
based methods [7], [8] achieve impressive performance by
training a lightweight network to approximate the solution of a
computationally expensive algorithm. Specifically, the network
policy is trained by minimizing the distance between predic-
tions and labels demonstrated by the expert. However, the
evaluation metrics should take the smoothness and safety into
account, instead of the distance to the optimal demonstrations.
For example, it is equally feasible to avoid a spherical obstacle
from all around, but the limited expert labels, even with the
multi-hypothesis winner-takes-all loss, cannot represent the
realistic distribution of cost. On the other hand, the upper
bound of the network policy is the expert policy, making it
highly dependent on the performance of the expert. On the
contrary, the network policy in reinforcement learning [9],
[10] is trained by maximizing the rewards from environment,
which realistically reflects the performance of the action.
Furthermore, it explores the optimal policy by trial-and-error
rather than imitation, thus having the potential to outperform
the classical expert. However, compared to the direct asso-
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ciation between inputs and labels in supervised learning, the
reward signal of reinforcement learning is frequently sparse,
noisy, and delayed, making it harder to converge. Additionally,
some other methods [11], [12] train a network for collision
prediction of pre-defined motion primitives, which reflects the
feasibility of trajectories accurately and considers the multi-
modality of planning problem. However, the finite pre-defined
primitives cannot represent complex trajectories and cover
feasible solutions comprehensively.

In contrast to these approaches, we propose a learning-
based one-stage planner without relying on explicit map. As
visualized in Fig. 1, we integrate perception and mapping,
front-end path searching, and back-end trajectory optimization
into a single network. Specifically, our approach takes the
noisy depth images as sensory inputs and adopts a lightweight
backbone for perception and feature extraction. Benefiting
from the data-driven nature and privileged learning strat-
egy, the proposed planner exhibits competitive robustness to
sensory noise without mapping and filtering. To search the
solution space thoroughly and yield better replanning, we
adopt a set of motion primitives (represented by the boundary
state) uniformly sampled within the FOV of depth camera
as the front end. Inspired by the one-stage object detector
YOLO (You Only Look Once) [13] predicting the offsets
and confidences of pre-defined anchor boxes, we utilize the
primitives as anchors and parallelly predict the offsets and
scores of them for further improvement in a single forward
propagation. We select the optimal primitive according to
the scores and apply the offsets to the state of primitive
as the back-end optimization. Finally, the optimal trajectory
is represented as a high-order polynomial by solving the
boundary value problem.

Besides, to address the above problems in present learning
paradigms, we propose a novel unsupervised learning strategy
termed guidance learning. As visualized in Fig. 2, the network
policy in supervised learning is trained by the gradient of an
analytic loss function between predictions and labels, whereas
the actor-critic based reinforcement learning utilizes a critic
network to model the environment and serve as the differen-
tiable function. On the contrary, we consider that the essence
of both classical and learning-based methods is gradient opti-
mization. In classical gradient-based trajectory optimization,
the numerical gradient of the cost (obtained by querying
ESDF map, etc.) is applied to the parametric representation of
trajectory (e.g., waypoints of polynomials or control points of
B-spline). We further back-propagate this numerical gradient
to the weights of neural network via the chain rule in the
training process. Therefore, the feedback is realistic, accurate,
and timely. Furthermore, the expert-free strategy allows us to
initialize various states and goals for a depth sample in training
for data augmentation, while not requiring re-annotation or
re-interaction with the simulator. There is no need to assign
labels to the predictions, making it practical to predict more
alternative trajectories simultaneously. Compared to giving
expert demonstrations for imitation in supervised learning
or exploring by trial-and-error in reinforcement learning, we
provide numerical gradient as guidance to lead the learning
process. Thus, we term it “guidance learning”. For the multi-
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Fig. 2. Comparison of different learning-based paradigms.

modal nature of navigation, we explicitly divide the solution
space and predict trajectories from the corresponding region of
image using a fully convolutional header with shared weights.
Compared with predicting few trajectories by different neurons
and mapping labels by the winner-takes-all principle, our
predictions are unambiguous and clear-corresponding, and
therefore, avoid the mode collapse problem (all predictions
of the network are close to the same label).

The main contributions of this work are as follows:
1) An efficient learning-based one-stage planner is pro-

posed, which integrates the perception, front-end path
search, and back-end optimization in a single forward
propagation and significantly reduces the processing
latency.

2) To explore the solution space comprehensively and gen-
erate more alternative trajectories for better replanning,
a fully convolutional network is developed to predict
the offsets of predefined primitive anchors uniformly
sampled within the FOV of camera.

3) To train the proposed network, a realistic, accurate,
and data-efficient learning method is proposed, which
directly back-propagates the numerical gradients from
the privileged environment to the weights of the neural
network.

II. METHOD

A. One-stage Planner

1) Trajectory Representation: In this work, the trajec-
tory is presented as three independent one-segment time-
parameterized polynomials in the body frame with dimensions
µ ∈ {x, y, z}:

fµ(t) = a0 + a1t+ a2t
2 + a3t

3 + ...+ ant
n . (1)

The vector of coefficients is written as

A = [a0, a1, a2, a3, ..., an] . (2)

The overall system is illustrated in Fig. 3. Firstly, the
navigation problem is in general multi-modal, and therefore,
the planner can be trapped in different local minima around
different initial paths. The front-end is utilized to search the
solution space more thoroughly and provide topologically
distinct initial paths for local optimization. Similarly, we adopt
a set of motion primitives P = {p0, p1, p2, ..., pM−1} as the
anchor to cover the searching space, each of which guides
an independent optimization in training. Consistent with our
previous approach [11], the primitive library is defined in the



3

ESDF 
Map

Position
Attitude

Trajectories
Generation

Primitives Definition
& Offsets Application

Costs Evaluation & 
Gradients Computation

Training

Prim
itive Selection

&
 O

ffsets A
pplication

Coefficients Solving
 &

 Trajectory G
eneration

Inference

Inputs

Vel. & Acc. & Dir.

Depth Image

Depth

ResNet-18 Backbone
Vel.
Acc.

Goal Dir.

Controller
& 

Actuators

p, v, a, 
yaw

Mφ

Mθ

predictions

offsets, derivatives, score

Coordinate Transformation
Training
Inference

gradients, scores

Back Propagation

Fig. 3. System Overview. Our method takes the depth image, current states,
and goal direction as input, and predicts the offsets, end-derivatives, and score
for each primitive. The ground truth of ESDF map is utilized for numerical
gradient computation in training, while is unavailable for the network policy.

state lattice space rather than in polynomial coefficients. This
expression is spatially separated, facilitating the integration
between network predictions and primitive anchors. Specifi-
cally, we uniformly sample Mθ polar angles and Mϕ azimuth
angles in the visible range of depth sensor (denoted by θ and
ϕ, respectively). As visualized in Fig. 4, the motion primitive
pij is defined as (3) in the body frame:

pij = (r cos θj cosϕi, r cos θj sinϕi, r sin θj) . (3)

Where i∈ [1,Mϕ], j∈ [1,Mθ] represent the index of primitive
in horizon and vertical directions respectively, and r is the
radius of planning horizon. Instead of solving the coefficients
of the primitive trajectory in [11], we treat (3) as independent
initial value to guide the optimization process in training.

In classical pipelines, the safety and smoothness of initial
path are further improved by non-linear optimization, which
incorporates the gradient information from the ESDF map and
dynamic constraints. Differently, we utilize an end-to-end net-
work to achieve this. For each primitive, we predict the offsets
∆θ, ∆ϕ, and ∆r, as well as the end-derivatives (velocity and
acceleration for 5-order polynomial) and corresponding score.
The refined end-state of the ij-th trajectory can be expressed
by:

p′ij = (r′ij cos θ′ij cosϕ′ij , r
′
ij cos θ′ij sinϕ′ij , r

′
ij sin θ′ij). (4)

Where r′ij = r+∆rij , ϕ′ij = ϕi+∆ϕij , and θ′ij = θj+∆θij .
For brevity, we omit the subscript ij if not cause ambiguity
in the following. In this work, we fix the execution time and
generate receding-horizon trajectories with varying radius r′.
Finally, we incorporate the current state (given by the state
estimator) and end state (the position p′ij and its derivatives
predicted by network) into a vector d, and introduce a constant
matrix M to map it to the coefficients A:

A = M−1d . (5)

Note that the primitive anchors are pre-defined and do not
require additional computation during inference. Moreover, we
predict multiple feasible trajectories with different topologies
simultaneously in a single forward propagation and only the
optimal one is solved according to the predicted scores.
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Fig. 4. Visualization of the primitives and predicted trajectories. We divide the
depth image into Mϕ ×Mθ grids, each of them corresponds to a primitive.
We predict the offsets and end-derivatives to improve the performance of
primitives within a local solution space.

2) Network Architecture: In this work, we unify the sep-
arate components of motion planning into a single neural
network. As shown in Fig. 3, it takes the depth image, current
state (velocity and acceleration), and goal direction (a unit
vector) as inputs, and predicts the offsets, end-derivatives,
and score of every primitive. For dimensionality reduction,
the inputs and outputs are represented in the body frame,
thereby avoiding the need for position and attitude. Firstly,
we divide the depth image into Mϕ×Mθ grids, each of them
corresponds to a primitive in its frustum. Each grid cell is
responsible for predicting the offsets ∆θ, ∆ϕ, and ∆r, as well
as the end-derivatives and score of the corresponding primitive.
We modify the ResNet-18 as the backbone for depth feature
extraction. For example, we use the downsampling factor of
32 when Mϕ × Mθ = 3 × 3 and the image resolution is
96 × 96. Instead of predicting all primitives simultaneously
using a fully connected layer in previous work [11], we predict
independent trajectory at every location in the feature map
by 1×1 convolutional layer with shared weights. However,
different from object detection tasks, the motion planning
problem is not translation invariant. That is, we want different
predictions at different grids even with the same features.
Taking the grids in Fig. 4 as example, we want the rightward
offsets at the left grid (a), while the leftward offsets at the right
grid (b). To avoid contradictions, we introduce the primitive
frame and define the rotation matrix from body to primitive
frame as:

Rij = Rz(ϕi)Ry(−θj) . (6)

Where Ry(·) and Rz(·) represents the rotation in axis y and
z, respectively. Subsequently, the inputs are transformed to the
primitive frames by (7) and concatenated to the corresponding
locations of feature map:

x′ij = R−1ij x . (7)

Where x represents the vector of current state and goal
direction in the body frame. In addition, the end-derivatives
predicted by the network are also defined in the primitive
frame. Through this transformation, the inputs and predictions
are decoupled with the location of grids.
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Fig. 5. Illustrative cost function of different training paradigms in scenario
(a). For visualization, we plot the distributions with ϕ and θ as free variables,
while keeping the current state, planning horizon, and end-derivatives fixed.

Subsequently, the network outputs a tensor y with the shape
of Mϕ × Mθ × Md, where Mϕ × Mθ corresponds to each
primitive, and Md is the raw representation of offsets, end-
derivatives, and scores. In our experiments, Md = 10 for 3
offsets, 3 velocities, 3 accelerations, and 1 score for 5-order
polynomial. We use a hyperbolic tangent activation function
to constrain the outputs (yθ, yϕ, yr) and bound the offsets to
a fraction of solution space around the initial primitive. If
the local solution space prior is (−dθ,+dθ), (−dϕ,+dϕ), and
(−dr,+dr), then the predicted offsets correspond to:

∆θ = tanh(yθ) dθ

∆ϕ = tanh(yϕ) dϕ

∆r = tanh(yr) dr .

(8)

To explicitly capture the multimodality of planning problem
and thoroughly cover the visible space, the local space prior is
slightly larger than the FOV of the grid. Besides, the outputs
of end-derivatives yv and ya are also constrained by tanh(·)
for dynamical feasibility and transformed to the body frame
by:

v = Rij tanh(yv) vmax

a = Rij tanh(ya) amax .
(9)

After that, the predictions with optimal score are substituted to
(1) - (5) to solve the receding-horizon trajectory. Specifically,
we predict trajectories with 2 s time window at 15 Hz. That
is, only 1/30 of the trajectory is executed to ensure timely
reaction to obstacles. In addition, the heading angle (i.e.,
yaw) is defined as the bisector of the current velocity and
goal directions, and the trajectory is finally discretized into
reference states at 50 Hz for tracking by a geometric controller
[14].

B. Training Strategy

1) Guidance Learning: The core of training is gradient
optimization of weights by a differentiable loss function, yet

the motion planning problem is typically complex and non-
analytic. In imitation learning, the loss function is simplified
into a quadratic form by the distance to the optimal trajectories
as shown in Fig. 5(b). However, an extra expert policy is
required and its performance determines the upper bound of
the network policy. On the other hand, a label assignment
method is essential for multi-modal learning, but the distance
to the assigned label still cannot reflect the realistic cost.
On the contrary, the actor-critic based reinforcement learning
method trains a differentiable critic-network to model the
environment for action evaluation. However, as depicted in
Fig. 5(c), training by trial-and-error requires a large amount
of data and may not converge accurately, which is particularly
restrictive for complex and slow-to-simulate systems.

To solve above problems, a novel training method is pro-
posed in this work to guide the learning process. It provides
realistic trajectory evaluation as shown in Fig. 5(d), and
is experimentally demonstrated to outperform the classical
gradient-based method (i.e., the expert) with the same cost
function. Traditionally, the numerical gradient of the cost (by
querying ESDF map, etc.) is applied to the parametric repre-
sentation of trajectory (waypoints of polynomial or control
points of B-spline) for non-linear optimization. We further
back-propagate this numerical gradient to the parameters of
neural network via the chain rule as the guidance for training.

Firstly, the formulation of the cost function is written as:

J = λsJs + λoJo + λgJg . (10)

Where Js is the smoothness cost to constrain the integral
of squared derivatives, Jo is the safety cost to penalize the
distance to obstacles, Jg is the goal cost to guide the quadrotor
flying towards the goal, and λi are the weight parameters for
trade-off. Inspired by [15], we rearrange the state vector d in
(5) into a fixed block dF (i.e., the current state) and free block
dP (i.e., the end state) using a selection matrix C:

A = M−1C

[
dF
dP

]
. (11)

As addressed in [15], the cost of the smoothness term can be
expressed by:

Js =

[
dF
dP

]T
CTM−TQM−1C

[
dF
dP

]
. (12)

Denote CTM−TQM−1C as matrix B, then the cost can
be written in a partitioned form as:

Js =

[
dF
dP

]T [
BFF BFP

BPF BPP

] [
dF
dP

]
. (13)

The Jacobian of Js with respect to dP can be computed as:

∂Js
∂dP

= 2dTFBFP + 2dTPBPP . (14)

Different from [6] optimizing a piecewise polynomial with
fixed end-state, we optimize the free end-state of a single
polynomial with fixed time T . Then, defining safety cost as the
line integral of the potential function over the trajectory leads
the quadrotor minimizing the cost by reducing the planning
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length. Therefore, we reformulate the safety cost as the time
integral of the potential function c(p(t)):

Jo =

∫ T

0

c(p(t))dt

=

T/δt∑
κ=0

c(p(Tκ))δt .

(15)

Where Tκ = κ · δt. Then, we follow [6] to define the potential
function as:

c(dt) = exp(−(dt − d0)/k) . (16)

Where dt is the distance to the nearest obstacle at p(t), d0 and
k are pre-defined scaling factors. Then, the Jacobian of Jo in
discrete form is:

∂Jo
∂dPµ

=

T/δt∑
κ=0

∇µc(p(Tκ))TLP δt . (17)

Where T = [T 0
κ , T 1

κ , ..., T nκ ]T , and LP is the right block of
matrix M−1C which corresponds to the free derivatives.

Additionally, we define the goal cost as the distance to a
temporary goal for numerical stability:

Jg = (dPp − g)2 . (18)

Where dPp is the position component of dP , and g is
the projection of the final goal onto the fixed-radius sphere
around the quadrotor. Then, the Jacobian of Jg can be simply
calculated as:

∂Jg
∂dPp

= 2(dPp − g) . (19)

The safety constraint is central to the planner. However, the
distance dt and gradient ∇µc(·) are queried from the ESDF
map, which is non-analytic. As described above, different
approaches are employed to approximate this non-analytic cost
function for training in imitation and reinforcement learning.
Instead, we discretize the integral on different time stamps
in (15) for numerical calculation, and back-propagate the
numerical gradients to the parameters of network directly via
the chain rule. With total Jacobian ∂J/∂dP = λs∂Js/∂dP +
λo∂Jo/∂dP + λg∂Jg/∂dP , the gradients of the network’s
predictions can be expressed by:

∂J

∂yε
=

∂J

∂dP

∂dP
∂∆ε

∂∆ε

∂yε
∂J

∂yε
=

∂J

∂dP

∂dP
∂yε

.

(20)

Where ε ∈ {θ, ϕ, r} and ε ∈ {v, a}. They can be easily calcu-
lated by substituting (4), (8), and (9). Besides, the trajectory
score is defined as −J and supervised by the smooth L1 loss:

L = SmoothL1(ys,−J) . (21)

Where ys is the score predicted by the network policy. It
is analytic and can be automatically derived by the deep
learning frameworks. Finally, we train the network by the
Adam optimizer with the manually calculated gradients as
guidance. To avoid the influence of negative trajectories, we
optimize the predicted scores of all primitives, but only the
end-states whose scores are greater than the threshold are
trained.

2) Privileged Learning: Since the data-driven nature of
deep learning, the network policy can achieve competitive
performance to the privileged expert while relying only on
limited sensory observations. The ground truth of the environ-
ment (point cloud and ESDF map) and complete state of the
quadrotor are accessible for gradient computation in training,
while only the noisy sensory observations are available for the
network. As illustrated in Fig. 6, the classical gradient-based
planners can be trapped in obstacles due to the insufficient
or wrong observations. Alternatively, the gradient-free method
MPPI (Model Predictive Path Integration) solve the planning
problem using forward sampling of stochastic diffusion pro-
cess, but may also fail to escape the sudden obstacles in the
traveling direction. In comparison, we train the network with
the perfect knowledge about the environment, thereby avoiding
falling into incorrect local minima. In addition, the data-driven
approach leverages the regularities in the training data, which
makes it more robust to sensor noise.

To prevent crashes in the early training stage, a dataset in-
cluding positions, orientations, and depth images is collected,
where the positions and orientations are only utilized for
gradient computation. We randomly reset the state of quadrotor
in Flightmare [16] simulator to collect 100K samples, and
preprocess the invalid depths by nearest-neighbor interpolation
to avoid confusion with near obstacles. Then, we iterate 50
epochs on the pre-collected dataset with the learning rate
of 1.5 × 10−4 and batch size of 16 to train the proposed
network. The threshold for trajectory selection in training is
set to 0.04 in our experiment. A too-small threshold will
lead the network overfitting to the safety conditions and
perform unstably on entire dataset. On the contrary, it cannot
converge to satisfactory results due to the influence of negative
samples when the threshold is too large. To ensure sufficient
coverage of the state space, we also use the dataset aggregation
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Fig. 7. Success rate with the forward speed varying from 2 m/s to 10 m/s in
obstacle densities of (a) 1/30 tree/m2 and (b) 1/20 tree/m2.

TABLE I
COMPARISON WITH THE EXPERT

Method Metric Cost Latency

Expert Average 0.078 30msOptimal 0.036

Network Average 0.105 (initial) 0.050 (final) 1.6msOptimal 0.056 (initial) 0.036 (final)

strategy (DAgger) for further fine-tuning. Besides, the expert-
free strategy allows us to initialize various states and goals
randomly for each depth sample for data augmentation, while
not requiring re-annotation or re-interaction with the simulator.

III. EXPERIMENT

In this section, a series of experiments are performed
to verify the proposed learning-based planner and training
strategy in simulation and real-world. In our physical platform,
the RealSense D455 is used to provide depth images with the
aspect ratio of 16 : 9. Therefore, we scale the raw images to
160 × 96 resolution and predict 5 × 3 trajectories with the
downsampling factor of 32. The simulated comparisons are
conducted in the open-source simulator Flightmare [16] on
i7-9700 CPU and RTX 3060 GPU. Furthermore, the network
policy is deployed with NVIDIA TensorRT for inference
acceleration and implemented on a physical quadrotor with
the computational unit of NVIDIA Xavier NX for real-world
experiment.

A. Training Strategy Validation

In this section, we verify the proposed guidance learning
strategy against the classical gradient-based method [6], which
can be utilized as the expert to provide demonstrations for
the network policy in imitation learning. Consistent with our
strategy, we adopt the same cost function defined in Section
II-B1 and optimize the end-states of the trajectories with fixed
execution time. We use the primitives as the initial values
for [6] to guide independent optimization and the privileged
information of the map is accessible in this validation. For a
fair comparison, we train the network for 50 epochs by the
proposed strategy and perform gradient descent 50 steps for
each sample by the expert.

We compare the average and the optimal cost of 5 × 3
trajectories between the proposed method and expert. As
shown in Table I, the network policy outperforms the expert

(a) Experiment with the obstacle density of 1/30 tree/m2.

(b) Experiment with the obstacle density of 1/20 tree/m2.

Fig. 8. Trajectory comparisons in simulated forest with massive trees and
low bushes.

in average cost and exhibits similar performance with the
expert in optimal cost. The result validates the proposed
training strategy and indicates that the network policy has
the potential to outperform the corresponding expert (which is
the upper bound of imitation learning). On the one hand, the
planning problem is usually complex and non-convex, while
the gradient-based expert is sensitive to the initial conditions
and is easily stuck in suboptimal solutions with unfavorable
initialization. On the contrary, the network policy has larger
receptive field and context, and is able to discover patterns
from the whole dataset and leverage the correlations for im-
provement. Besides, it is worth noting that the network policy
exceeds the baseline in average cost although only the high-
scoring trajectories are trained. It illustrates that the weight-
shared head trained with safe conditions is also workable for
unfavorable initialization.

Additionally, we compared the latency of the network and
expert policy. As visualized in Table. I, the network policy runs
over 10 times faster than the gradient-based optimization. It is
understandable because the network predicts all trajectories
in parallel, whereas the computation of classical methods
increases linearly with the number of trajectories.

B. Simulated Comparison

In this section, we compare the proposed approach with
three state-of-the-art vision-based methods: Fast Planner with
Topological Paths [3] (denoted as TopoTraj), MPPI Planner
with Hybrid A* [17], and the learning-based planner Agile
Autonomy [8] as baselines. The comparisons are conducted
in a simulated forest [16] with massive trees and low bushes,
while only the depth images and states are accessible from
the simulator. To ensure a fair comparison, we fine-tune the
baselines for better real-time and safety performance trade-offs
in the evaluation environment.

1) Obstacle Density: We evaluate the performance of above
methods with respect to obstacle density under the average
speed of 4 m/s. Trees are randomly placed with the diameters
of 0.3 - 0.6 m and densities of about 1/20 and 1/30 tree/m2,
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TABLE II
SIMULATED COMPARISON

Method Density (tree/m2)
Latency (ms) Safety (m)

Smoothness (m2/s5) Traj. Length (m)
Mapping Front Back Total Avg Min

TopoTraj 1 / 30 48.5 6.1 7.3 61.9 1.23 0.18 352.72 53.54
1 / 20 1.00 0.08 810.17 54.28

MPPI 1 / 30 6.5 5.0 8.2 19.7 1.23 0.08 14.92 51.58
1 / 20 0.94 0.06 16.83 52.88

Agile Autonomy 1 / 30 / / / 5.4 1.13 0.12 2324.47 51.65
1 / 20 1.01 0.10 2954.46 52.42

Proposed 1 / 30 / / / 1.6 1.63 0.24 37.87 52.24
1 / 20 1.28 0.16 73.52 52.78

* The best planning metrics under different densities are highlighted in blue and red, and the optimal real-time performance is marked in bold.

respectively. The average performance statistics and the qual-
itative results are illustrated in Table. II and Fig. 8.

Firstly, we compare the computational cost of our approach
against the baselines. With total computation time of 61.9
ms per frame, TopoTraj incurs the highest processing latency,
most of which is spent on mapping and ESDF computation.
Although MPPI Planner significantly reduces the mapping
delay by implementing parallel on GPU, it performs back-
end optimization with a Monte Carlo approximation using
forward sampling, which is computationally complex. Besides,
the back end of TopoTraj is also time-consuming because
it performs independent optimization from multiple topologi-
cally distinct initial paths. By contrast, our approach achieves
significantly lower processing latency, which only takes about
1.6 ms for inference. It can be attributed to the unified
framework integrating perception, front-end path search, and
back-end optimization. Compared with Agile Autonomy, we
adopt a lighter backbone and predict multiple trajectories by
a fully convolutional network instead of several independent
heads, making our pipeline more concise.

Subsequently, we evaluate the safety metric (distance to
the nearest obstacle) and smoothness metric (integral of the
squared jerk) of our method and the baselines. As illustrated,
our approach demonstrates the best safety and competitive
smoothness performance in comparisons of different densities.
It can be explained that we simultaneously predict multiple
feasible trajectories with distinct topologies for comprehensive
exploration of the solution space in significantly lower latency.
Similarly, the safety performance of TopoTraj with multiple
topological guiding paths is superior to MPPI with a single
Hybrid A* as the front end. Furthermore, Agile Autonomy
also achieves impressive performance under dense scenario,
indicating that the learning-based method with lower latency
is safer for high-speed flight with abrupt obstacles. In the
smoothness metric, the MPPI Planner exhibits best by for-
mulating the planning problem as a stochastic optimal control
problem, while the Agile Autonomy results in higher costs
without considering the smoothness penalty during training.

2) Flight Speed: We validate the success rate of above
methods with the forward speed varying from 2 m/s to
10 m/s across different obstacle densities. We repeat the
experiments 10 times randomly for each condition and the
results are depicted in Fig. 7. As visualized, the learning-based
methods exhibit significantly higher success rate than the
classical vision-based method in both scenarios. Essentially,

Fig. 9. The physical platform and real-world experimental scenario. 1© - 3©
are the snapshots of the corresponding positions in Fig. 10.

the decrease in the performance of the classical baselines
can be attributed to the limited sensor range, noisy depth
observations, and insufficient map. On the one hand, the
mapping and ESDF updating are time-consuming as shown
in Table. II. On the other hand, the probabilistic updating
process is necessary to remove sensing noise but makes the
reconstruction of obstacles in the map slower. Comparatively,
the proposed method and [8] can react to the observations in
an extremely short time, making it safer for high-speed flight
with unpredictable obstacles. Due to the data-driven nature and
privileged learning strategy, the network policy demonstrates
competitive robustness to the sensory noise without the tempo-
ral filtering operations. Additionally, our approach outperforms
the Agile Autonomy below 6 m/s, since our method is able to
predict more alternative trajectories with different primitives to
explore the solution space more thoroughly. However, we take
the smoothness of trajectories into account during training,
which sacrifices the safety performance to a certain extent.
Therefore, Agile Autonomy is more competitive at higher
speeds in dense scenarios.

C. Real-world Experiment

In this section, we validate the proposed learning-based
one-stage planner in real-world. The network policy is im-
plemented on a small quadrotor with 250 mm diameter and
1.13 kg mass, as illustrated in Fig. 9. The main computational
unit is NVIDIA Xavier NX with 6-core ARM CPU and
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Fig. 10. Trajectories visualization of real-world flight experiments in dense
forest with velocity profiles. Note that the map is only constructed for
demonstration and 1© - 3© are the positions of the corresponding snapshots
in Fig. 9.

384 CUDA cores GPU, which only takes about 16 ms for
inference after being deployed on TensorRT. The RealSense
D455 is adopted to provide depth images with 87◦ × 58◦

FOV and around 6 m sensor range. Consistent with training,
we perform nearest-neighbor interpolation on invalid depths
for computational efficiency. Besides, the state estimation is
performed by the visual-inertial odometry VINS-Fusion and
the reference trajectory is tracked by a geometric controller.
All modules including localization, planning, and control are
integrated into an airborne computational unit Xavier NX.

As shown in Fig. 9, the real-world experiments are con-
ducted in a dense forest with the density of 1/10 tree/m2

and diameter of the tree about 0.25 m. It is challenging for
aggressive autonomous flight with noisy depth observations,
limited sensing range, and airborne computational resources.
The trajectories should be regenerated within extremely short
time to address the abrupt and unexpected obstacles. The
trajectories and velocity profiles are depicted in Fig. 10.
As visualized, the quadrotor executes aggressive trajectories
through the forest and achieves a maximum speed of 5.52
m/s. Note that the map is only constructed for visualization
and the experimental environment is never observed at training
time. We refer readers to the video for more information.

IV. CONCLUSIONS

In this paper, we propose a learning-based one-stage plan-
ner which integrates perception and mapping, front-end path
searching, and back-end optimization into a single network.
Our approach adopts a set of motion primitives to cover the
searching space, and predicts the offsets and scores of all

primitives in a single forward propagation. By comparisons,
the proposed method exhibits significantly lower latency and
demonstrates competitive performance to the SOTA methods.
Moreover, an unsupervised learning method is proposed to
train the network policy with the guidance of numerical
gradient from the privileged ESDF map. We also validate
that the network policy has the potential to outperform the
corresponding expert by the proposed training strategy. Finally,
autonomous flight experiments are conducted in a dense forest
to validate the efficiency of our method.
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